Elegant Way To Replace Values In Pandas.DataFrame From Another DataFrame
I have a data frame that I want to replace the values in one column, with values from another dataframe. df = pd.DataFrame({'id1': [1001,1002,1001,1003,1004,1005,1002,1006],
Solution 1:
try merge():
merge = df.merge(dfReplace, left_on='id1', right_on='id2', how='left')
print(merge)
merge.ix[(merge.id1 == merge.id2), 'value1'] = merge.value2
print(merge)
del merge['id2']
del merge['value2']
print(merge)
Output:
id1 value1 value3 id2 value2
0 1001 a yes 1001 rep1
1 1002 b no 1002 rep2
2 1001 c yes 1001 rep1
3 1003 d no NaN NaN
4 1004 e no NaN NaN
5 1005 f no NaN NaN
6 1002 g yes 1002 rep2
7 1006 h no NaN NaN
id1 value1 value3 id2 value2
0 1001 rep1 yes 1001 rep1
1 1002 rep2 no 1002 rep2
2 1001 rep1 yes 1001 rep1
3 1003 d no NaN NaN
4 1004 e no NaN NaN
5 1005 f no NaN NaN
6 1002 rep2 yes 1002 rep2
7 1006 h no NaN NaN
id1 value1 value3
0 1001 rep1 yes
1 1002 rep2 no
2 1001 rep1 yes
3 1003 d no
4 1004 e no
5 1005 f no
6 1002 rep2 yes
7 1006 h no
Solution 2:
This is a little cleaner if you already have the indexes set to id, but if not you can still do in one line:
>>> (dfReplace.set_index('id2').rename( columns = {'value2':'value1'} )
.combine_first(df.set_index('id1')))
value1 value3
1001 rep1 yes
1001 rep1 yes
1002 rep2 no
1002 rep2 yes
1003 d no
1004 e no
1005 f no
1006 h no
If you separate into three lines and do the renaming and re-indexing separately, you can see that the combine_first()
by itself is actually very simple:
>>> df = df.set_index('id1')
>>> dfReplace = dfReplace.set_index('id2').rename( columns={'value2':'value1'} )
>>> dfReplace.combine_first(df)
Post a Comment for "Elegant Way To Replace Values In Pandas.DataFrame From Another DataFrame"