Why Np.std() And Pivot_table(aggfunc=np.std) Return The Different Result
I have some code and do not understand why the difference occurs: np.std() which default ddof=0,when it's used alone. but why when it's used as an argument in pivot_table(aggfunc=n
Solution 1:
pivot uses DataFrame.groupby.agg and when you supply an aggregation function it's going to try to figure out exactly how to _aggregate
.
arg=np.std
will get handled here, the relevant code being
f = self._get_cython_func(arg)
if f and not args and not kwargs:
return getattr(self, f)(), None
Hidden in the DataFrame class is this table:
pd.DataFrame()._cython_table
#OrderedDict([(<function sum>, 'sum'),
# (<function max>, 'max'),
# ...
# (<function numpy.std>, 'std'),
# (<function numpy.nancumsum>, 'cumsum')])
pd.DataFrame()._cython_table.get(np.std)
#'std'
And so np.std
is only used to select the attribute to call, the default ddof
are completely ignored, and instead the pandas
default of ddof=1
is used.
getattr(dft['D'], 'std')()
#1.6669847417133286
Post a Comment for "Why Np.std() And Pivot_table(aggfunc=np.std) Return The Different Result"