Convert Quarterly Dataframe To Monthly And Fill Missing Values In Pandas
For a quarterly dataframe like this: date gdp rate 0 2003/3/1 523.82 0.1 1 2003/6/1 1172.83 0.2 2 2003/9/1 1882.48 0.4 3 2003/12/1 3585.72 0.1 4
Solution 1:
Another solution is create DatetimeIndex
, then use DataFrame.asfreq
with method='bfill'
and MS
for start of month and last convert to periods by DataFrame.to_period
:
df['date']=pd.to_datetime(df['date'])df=df.sort_values(by=['date'],ascending=[True])df.set_index('date',inplace=True)df=df.asfreq('MS',method='bfill').to_period('M').reset_index()print(df)dategdprate02003-03 523.820.112003-04 1172.83 0.222003-05 1172.83 0.232003-06 1172.83 0.242003-07 1882.48 0.452003-08 1882.48 0.462003-09 1882.48 0.472003-10 3585.72 0.182003-11 3585.72 0.192003-12 3585.72 0.1102004-01 706.770.2112004-02 706.770.2122004-03 706.770.2
Solution 2:
This works:
import pandas as pd
df['date'] = pd.to_datetime(df['date']).dt.to_period('M')
# df['date'] = pd.to_datetime(df['date'], format='%Y/%m/%d')df = df.sort_values(by=['date'], ascending=[True])
df.set_index('date', inplace=True)
df = df.resample('M').bfill().reset_index()
print(df)
output:
dategdprate02003-03 523.820.112003-04 1172.83 0.222003-05 1172.83 0.232003-06 1172.83 0.242003-07 1882.48 0.452003-08 1882.48 0.462003-09 1882.48 0.472003-10 3585.72 0.182003-11 3585.72 0.192003-12 3585.72 0.1102004-01 706.770.2112004-02 706.770.2122004-03 706.770.2
Post a Comment for "Convert Quarterly Dataframe To Monthly And Fill Missing Values In Pandas"