Merge Multiple Dataframe Pandas
I try to merge multiple new dataFrames in a main one. Suppose main dataframe: key1 key2 0 0.365803 0.259112 1 0.086869 0.589834 2 0.269619 0.183644 3
Solution 1:
First append
or concat
both DataFrame
s together and then merge
:
dat = pd.concat([data1, data2], ignore_index=True)
Or:
dat = data1.append(data2, ignore_index=True)
print (dat)
key1 key2 new feature
00.3658030.259112 info1
10.2040090.669371 info2
#if same joined columns names better is only on parameterdf = test.merge(dat, on=['key1', 'key2'], how='left')
print (df)
key1 key2 new feature
0 0.365803 0.259112 info1
1 0.086869 0.589834 NaN
2 0.269619 0.183644 NaN
3 0.755826 0.045187 NaN
4 0.204009 0.669371 info2
Solution 2:
You can use pd.DataFrame.update
instead:
# create new column and set index
res = test.assign(newfeature=None).set_index(['key1', 'key2'])
# update with new data sequentially
res.update(data1.set_index(['key1', 'key2']))
res.update(data2.set_index(['key1', 'key2']))
# reset index to recover columns
res = res.reset_index()
print(res)
key1 key2 newfeature
00.3658030.259112 info1
10.0868690.589834None20.2696190.183644None30.7558260.045187None40.2040090.669371 info2
Solution 3:
You can also set the data frames to the same index and use simple loc
df = df.set_index(["key1", "key2"])
df2 = df2.set_index(["key1", "key2"])
Then
df.loc[:, "new_feature"] = df2['new_feature']
Post a Comment for "Merge Multiple Dataframe Pandas"