Visualising 2 Parameters And Their Results
There's 2 parameters where I want to try different values for: a = [0.0, 0.5, 0.6] # len == 3 b = [0.0, 0.02 , 0.05, 0.1] # len == 4 For each value of a, try each value of b. Th
Solution 1:
There are many different options. The first step in any case needs to be to convert your res
list into a numpy array.
For many plots like imshow
, pcolor(mesh)
or contourf
, you need to have three 2D arrays, which you can obtain via reshaping of your input array (given that it is ordered correctly).
The following shows some options you have:
res = [(0.0, 0.0, 0.5), (0.0, 0.02, 0.7), (0.0, 0.05, 0.6), (0.0, 0.10, 0.8),
(0.5, 0.0, 0.4), (0.5, 0.02, 0.6), (0.5, 0.05, 0.5), (0.5, 0.10, 0.7),
(0.6, 0.0, 0.3), (0.6, 0.02, 0.5), (0.6, 0.05, 0.4), (0.6, 0.10, 0.6)]
import matplotlib.pyplot as plt
import numpy as np
res = np.array(res)
A = res[:,0].reshape(3,4) #A in y direction
B = res[:,1].reshape(3,4)
Z = res[:,2].reshape(3,4)
fig, ((ax, ax2), (ax3, ax4)) = plt.subplots(2,2)
#imshow
im = ax.imshow(Z, origin="lower")
ax.set_xticks(range(len(Z[0,:])))ax.set_yticks(range(len(Z[:,0])))ax.set_xticklabels(B[0,:])ax.set_yticklabels(A[:,0])#pcolormesh, first need to extend the grid
bp = np.append(B[0,:], [0.15])
ap = np.append(A[:,0], [0.7])
Bp, Ap = np.meshgrid(bp, ap)
ax2.pcolormesh(Bp, Ap, Z)
#contour
ax3.contourf(B, A, Z, levels=np.linspace(Z.min(), Z.max(),5))
#scatterax4.scatter(res[:,1], res[:,0], c=res[:,2], s=121)
ax.set_title("imshow")
ax2.set_title("pcolormesh")
ax3.set_title("contourf")
ax4.set_title("scatter")
plt.tight_layout()
fig.colorbar(im, ax=fig.axes, pad=0.05)
plt.show()
Post a Comment for "Visualising 2 Parameters And Their Results"