How To Create An Edge List Dataframe From A Adjacency Matrix In Python?
I have a pandas dataframe (think of if as a weighted adjacency matrix of nodes in a network) of the form, df, A B C D A 0 0.5 0.5 0 B 1 0 0 0 C 0.
Solution 1:
Mark diagonal as nan
, then we stack
df.values[[np.arange(len(df))]*2]= np.nan
df
Out[172]:
A B C D
A NaN0.50.50.0
B 1.0NaN0.00.0
C 0.80.0NaN0.2
D 0.00.01.0NaN
df.stack().reset_index()
Out[173]:
level_0 level_1 00 A B 0.51 A C 0.52 A D 0.03 B A 1.04 B C 0.05 B D 0.06 C A 0.87 C B 0.08 C D 0.29 D A 0.010 D B 0.011 D C 1.0
Solution 2:
Using rename_axis
+ reset_index
+ melt
:
df.rename_axis('Source')\
.reset_index()\
.melt('Source', value_name='Weight', var_name='Target')\
.query('Source != Target')\
.reset_index(drop=True)
SourceTargetWeight0BA1.01CA0.82DA0.03AB0.54CB0.05DB0.06AC0.57BC0.08DC1.09AD0.010BD0.011CD0.2
melt
has been introduced as a function of the DataFrame
object as of 0.20
, and for older versions, you'd need pd.melt
instead:
v = df.rename_axis('Source').reset_index()
df = pd.melt(
v,
id_vars='Source',
value_name='Weight',
var_name='Target'
).query('Source != Target')\
.reset_index(drop=True)
Timings
x = np.random.randn(1000, 1000)
x[[np.arange(len(x))] * 2] = 0
df = pd.DataFrame(x)
%%timeit
df.index.name ='Source'
df.reset_index()\
.melt('Source', value_name='Weight', var_name='Target')\
.query('Source != Target')\
.reset_index(drop=True)
1 loop, best of3: 139 ms per loop
# Wen's solution
%%timeit
df.values[[np.arange(len(df))]*2] = np.nan
df.stack().reset_index()
10 loops, best of 3: 45 ms per loop
Solution 3:
Two approaches using NumPy tools -
Approach #1
def edgelist(df):
a = df.values
c = df.columns
n = len(c)
c_ar = np.array(c)
out = np.empty((n, n, 2), dtype=c_ar.dtype)
out[...,0] = c_ar[:,None]
out[...,1] = c_ar
mask = ~np.eye(n,dtype=bool)
df_out = pd.DataFrame(out[mask], columns=[['Source','Target']])
df_out['Weight'] = a[mask]
return df_out
Sample run -
In[155]: dfOut[155]:
ABCDA0.00.50.50.0B1.00.00.00.0C0.80.00.00.2D0.00.01.00.0In[156]: edgelist(df)
Out[156]:
SourceTargetWeight0AB0.51AC0.52AD0.03BA1.04BC0.05BD0.06CA0.87CB0.08CD0.29DA0.010DB0.011DC1.0
Approach #2
# https://stackoverflow.com/a/46736275/ @Divakar
def skip_diag_strided(A):
m = A.shape[0]
strided = np.lib.stride_tricks.as_strided
s0,s1 = A.strides
return strided(A.ravel()[1:], shape=(m-1,m), strides=(s0+s1,s1))
# https://stackoverflow.com/a/48234170/ @Divakar
def combinations_without_repeat(a):
n = len(a)
out = np.empty((n,n-1,2),dtype=a.dtype)
out[:,:,0] = np.broadcast_to(a[:,None], (n, n-1))
out.shape = (n-1,n,2)
out[:,:,1] = onecold(a)
out.shape = (-1,2)
return out
cols = df.columns.values.astype('S1')
df_out = pd.DataFrame(combinations_without_repeat(cols))
df_out['Weight'] = skip_diag_strided(df.values.copy()).ravel()
Runtime test
Using @cᴏʟᴅsᴘᴇᴇᴅ's timing setup
:
In [704]: x = np.random.randn(1000, 1000)
...: x[[np.arange(len(x))] * 2] = 0
...:
...: df = pd.DataFrame(x)
# @cᴏʟᴅsᴘᴇᴇᴅ's soln
In [705]: %%timeit
...: df.index.name = 'Source'
...: df.reset_index()\
...: .melt('Source', value_name='Weight', var_name='Target')\
...: .query('Source != Target')\
...: .reset_index(drop=True)
10 loops, best of 3: 67.4 ms per loop
# @Wen's soln
In [706]: %%timeit
...: df.values[[np.arange(len(df))]*2] = np.nan
...: df.stack().reset_index()
100 loops, best of 3: 19.6 ms per loop
# Proposed in this post - Approach #1
In [707]: %timeit edgelist(df)
10 loops, best of 3: 24.8 ms per loop
# Proposed in this post - Approach #2
In [708]: %%timeit
...: cols = df.columns.values.astype('S1')
...: df_out = pd.DataFrame(combinations_without_repeat(cols))
...: df_out['Weight'] = skip_diag_strided(df.values.copy()).ravel()
100 loops, best of 3: 17.4 ms per loop
Solution 4:
Using NetworkX 2.x API:
import networkx as nx
In [246]: G = nx.from_pandas_adjacency(df, create_using=nx.MultiDiGraph())
In [247]: G.edges(data=True)
Out[247]: OutMultiEdgeDataView([('A', 'B', {'weight': 0.5}), ('A', 'C', {'weight': 0.5}), ('B', 'A', {'weight': 1.0}), ('C', 'A', {'weight': 0.8}), ('C', 'D', {
'weight': 0.2}), ('D', 'C', {'weight': 1.0})])
In [248]: nx.to_pandas_edgelist(G)
Out[248]:
source target weight
0 A B 0.51 A C 0.52 B A 1.03 C A 0.84 C D 0.25 D C 1.0
Post a Comment for "How To Create An Edge List Dataframe From A Adjacency Matrix In Python?"